

Growing Degree Days Student Packet

Name:	Period:
What Do You Think?	
Make a list of five factors that impact the growth of corn:	
1.	
2.	
3.	
4.	
5.	

Growing Degree Days: An A"maize"ing Harvest Calculation

Driving through Kansas, it is difficult to miss fields of corn in the spring and summer. In an average year, more than 500 million bushels of corn are harvested in Kansas. That's a lot! With numbers like that, it might lead one to believe it is easy to grow corn in Kansas. While Kansas is a large corn producer, to be successful, farmer need to know more than just when to plant and water their crop. There's a science behind knowing when to plant corn, when to expect different stages of growth, and when to harvest. It's called *growing degree days* (GDD).

In the spring, there are many important factors to consider when a farmer is thinking about planting corn. Are we done with freezes for the season? Is there moisture on the way? How much light is hitting my plants? While these are in the forefront of a farmer's mind, another major factor is going to be temperature. We are not only talking air temperature, but also ground temperature.

According to the Kansas State University Department of Agronomy, if a farmer plants corn from when the ground temperature is between 50°F and 55°F, it can take 18 to 21 days to see emergence. If the farmer plants corn when the ground temperature is between 60°F and 65°F, it might only take 8 to 10 days to see emergence. What a difference!

lowa State University's Department of Agronomy adds that corn will not grow below 50°F. Corn grows best in conditions between 50°F and 86°F. Between 86°F and 93°F, corn continues to grow, but the increase in temperature does not give additional benefit to the plant. Above 93°F, there can be a negative impact on the growth of corn. Above 110°F, true heat stress can occur on the plant. In general, warmer weather helps corn grow and cooler weather slows growth.

Growing Degree Days Student Packet

Growing Degree Days: An A"maize"ing Harvest Calculation

Temperature Impact on Corn	Temperature
Little to no growth	Below 50°F
Ideal growth conditions	Between 50°F and 86°F
Some negative impacts on growth	Above 93°F
Heat stress and harm to growth	Above 110°F

Calculating Growing Degrees Days for Corn

Lower Base Temperature: 50°F Upper Limit Temperature: 86°F

$$GDD \, ^{\circ}F = \, \frac{\textit{Daily Max Temp }^{\circ}F + \textit{Daily Min Temp }^{\circ}F}{2} \quad - \textit{Lower Base Temperature }^{\circ}F$$

A few rules:

Rule 1: If the daily maximum and/or minimum temperature $< 50^{\circ}F$, it's set equal to $50^{\circ}F$ in the equation. (For example, if the temperature is $38^{\circ}F$, we bump it up to $50^{\circ}F$ in the calculation.)

Rule 2: If the daily maximum temperature $> 86^{\circ}F$, it's set equal to $86^{\circ}F$ in the equation.

Examples:

Example 1: If on a beautiful May day, the high (maximum temperature) was 80°F and the low (minimum temperature) was 56°F, then:

The average temperature for the day is = $(80^{\circ}F + 56^{\circ}F) / 2 = 68^{\circ}F$

And that day's Corn GDD ($^{\circ}$ F) = 68° F - 50° F = **18 GDD (^{\circ}F)**

Growing Degree Days Student Packet

Examples (Continued):

Example 2: If on a mild April day, the high (maximum temperature) was 66°F and the low (minimum temperature) was 38°F, then:

Remember the rules!

In this case:

The daily minimum temperature of 38°F is replaced with 50°F, according to the rules.

The average temperature for the day is = $(66^{\circ}F + 50^{\circ}F) / 2 = 58^{\circ}F$

And that day's Corn GDD (°F) = 58°F - 50°F = 8 GDD (°F)

Now, it's your turn. Follow the process from the previous page to calculate the growing degree days for this example week. Work the problems out in the space below. Remember to add the GDDs you accumulate each day to see how many were accumulated for the week.

	Monday	Tuesday	Wednesday	Thursday	Friday
Maximum	86°F	91°F	89°F	49°F	89°F
Temperature					
Minimum	52°F	45°F	50°F	42°F	51°F
Temperature					

Total GDDs for the week:

Sources

- Ground temperature and plant emergence http://www.agronomy.k-state.edu/extension/crop-production/corn/corn-growth-and-development.html
- Temperatures and corn growth http://agron-www.agron.iastate.edu/courses/Agron541/classes/541/lesson02b/2b.1.html

	Growing Degree Da	iys Student Work	sheet
Name:			
	Growing Degre	ee Days for Corn:	
(No	ote: Data available online	e at tinyurl.com/KS	CornGDD)
	Table 1. Approximate Grown required for a mid-season mid- different growth stages from	aturity corn hybrid to red	ach
	Stage		GDD
	VE - Emergence		125
	V6 - Tassel initiation		475
	VT - Tassel emergence		1,150
	Silking		1,400
	R4 - Dough stage		1,925
	R5 - Dent stage		2,450
	R6 - Physiological maturity	or black-layer	2,700
Field #1 (must come from Earliest First Freeze (Since 19)			
Larilesi Firsi Freeze (Since is	900):	Latest:	
VE Date:		R4 Date:	
V6 Date:		R5 Date:	
VT Date:		R6 Date:	
Field #2 (must come from which state, and in what po	•		a, Nebraska, or Minnesota): Ir
Earliest First Freeze (Since 19	980):	Latest:	
VE Date:		R4 Date:	
V6 Date:		R5 Date:	

R6 Date:

VT Date:

S4

Growing Degree Days Student Worksheet

Field #3 (must come from Ohio, Indiana, Illinois, Wisconsin, or Michigan): In which county is the field?

Earliest First Freeze (Since 1980):	Latest:
VE Date:	R4 Date:
V6 Date:	R5 Date:
VT Date:	R6 Date:
Reflection 1. Did any of the fields you chose never get to the R4 Date? growth cannot make it to that level?	? If so, where? What do you think it means if the corr
2. Based on your data, where would be the ideal place to g	grow corn? What are three reasons why?
3. What do you think would be the worst place to grow cor	rn in the United States? Why?

Sources

• Table showing approximate GDD required to reach different growth stages – Clemson Cooperative Extension https://www.clemson.edu/extension/publications/files/