

Name _____

Mendelian Inheritance and Chi-Square Analysis in Corn

A chi-square is a statistical test to determine how well the actual data fit a predicted outcome. If the chi-square test fits then the prediction is considered accurate enough that the hypothesis cannot be rejected. Observe the corn cob pictured below.

We will first look at the trait of kernel color.

Which trait do you think might be dominant? _____, ... recessive _____?

What cross do you think might have produced this corn cob? _____ x _____

(This is your hypothesis)

If that is correct, what would be the probability of the kernels being blue? _____, ... yellow? _____

I randomly selected 100 kernels in the image below. If your hypothesis is correct, how many kernels would be expected to be blue? _____, ... yellow? _____ (Write these numbers in the table below.)

	Blue	Yellow
Observed		
Expected		

Now, we will count the number of blue and yellow kernels and see how well they fit our prediction.

A chi-square test is used to determine the percent chance that the observed difference between the predicted and observed value is due to chance alone. The agreed upon limit for this value is 0.05 or 5%.

	Blue	Yellow
Observed	67	33
Expected 3:1	75	25

Perform chi-square

	Blue	Yellow
Observed		
Expected		

Degrees of freedom – the number of possible outcomes – 1 In this cross, the kernels are either blue or yellow. 2 outcomes – 1 = 1 degree of freedom

Compare your value with the 0.05 value and the correct number of degrees of freedom.

Degrees of Freedom	Probability of exceeding critical value		
	0.10	0.05	0.025
1	2.706	3.841	5.024
2	4.605	5.991	7.378
3	6.251	7.815	9.348
4	7.779	9.488	11.143

* Remember if your chi-squared value is above the critical value you must reject your hypothesis.

Do we reject the hypothesis?_____

Now using an actual corncob, run a chi-quare test for the same kernel color trait.

Hypothesis for parent genotypes: _____ x ____

Probability for prediction is blue _____, yellow _____.

Count 100 kernels, recording the number of blue and yellow.

Multiply the total number counted by the predicted probability for each trait.

	Blue	Yellow
Observed		
Expected		
$x^2 =$	$\sum^{\text{observed}} rac{(O-E)}{E}$) ²

expected

Perform a chi-square test.

Chi-quare critical value = _____

Was your hypothesis rejected?

Dihybrid cross

You have probably noticed that the kernels also have a variety of textures, some being smooth while others are wrinkled. This is also controlled by a single gene (S) for starchy smooth or shriveled sugary endosperm. Observe your corncob and come up with a hypothesis for the genotypes of each parent for both kernel color and texture genes. _____ x ____ (Example BbSs x BbSs)

Using your hypothesis, determine the probability for each of the following trait combinations.

Blue and Smooth _____

Blue and Shriveled_____

Yellow and Smooth _____

Yellow and Shriveled_____

Count 4 different rows of kernels, and record the number of each of the trait combinations.

Multiply the total number of kernels counted to determine the expected number of each phenotype.

How many degrees of freedom are there in this test?

	Blue and Smooth	Blue and Shriveled	Yellow and Smooth	Yellow and Shriveled
Observed				
Expected				

Perform a chi-square test on the data above. There will be two more data sets to test.

Chi-square critical value =				
Does your data support your hypothesis?				
Chi-square value $\sum_{x^2 - x^2}^{\text{sum}} \frac{(O - E)^2}{(O - E)^2}$				
$x = \angle E$				
	expected			

Degrees of Freedom	Probability of exceeding critical value		
	0.10	0.05	0.025
1	2.706	3.841	5.024
2	4.605	5.991	7.378
3	6.251	7.815	9.348
4	7.779	9.488	11.143

Degrees of freedom=_____

S4